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Decision support systems are becoming increas-
ingly accepted in medical practice in the United
States. Clinicians recognize the need for aid in
interpretation of complex cardiac rhythms. The
EINTHOVEN system is being developed to meet
that need. In this paper, we address the need to deal
with errors in the input due to inaccuracies in hand
annotations by the inexperienced user and to inter-
act with the user to correct them. Four specific types
of input errors are described: missing waves, mispo-
sitioned waves, mislabeled waves, and extra waves.
General and specific mechanisms by which these er-
rors can be recognized and remedied are described.
These results may be interesting as an example of
the practical problems that arise in the design of real-
world expert systems.
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INTRODUCTION
The classical motivation for development of
computer-based electrocardiogram (ECG) interpre-
tation systems was the need to improve automated
real-time and near real-time rhythm interpretation,
as in intensive care units and Holter monitoring
equipment. While these are still important applica-
tions, the recent increase in access to Internet com-
munications from rural areas suggests another ap-
plication area: the rural health care provider who
has a patient with a complex arrhythmia and no
readily-available expert in electrocardiography. We
are extending the EINTHOVEN system to sup-
port the user who has a sophisticated medical back-
ground but is relatively inexperienced in the area of
ECG interpretation [1, 2, 3]. This paper explores
design issues concerning errors that such users may
make, and implementation of tolerant strategies in
EINTHOVEN that recognize and compensate for
these classes of errors. Compensation for errors is
particularly important because inexperienced users
may rely uncritically on decision support systems [4].
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The types of errors expected from inexperienced
users differ from those expected from automatic
rhythm interpretation systems. In both cases, er-
rors in identification of waves can occur. In the case
of automated systems, the errors will be due to ar-
tifact in the signal, while the noise-free signal can
be analyzed accurately by very sophisticated algo-
rithms. In the case of the wave annotation by hand
by humans, errors will be due to failure to recog-
nize unusual, yet clear, appearances of waves, while
artifact will usually be recognized and ignored. In
this report, we focus on the types of errors that are
commonly made by clinicians with limited expertise
in electrocardiography.

RELATED WORK
The general topic of human error in medicine has
been an active area of research in cognitive science,
human factors engineering, and systems analysis,
and has been reviewed recently in medical publica-
tions [5, 6]. To our knowledge, the specific problem
of human errors in interpreting electrocardiograms
has not been analyzed previously.

METHODS
Overview of the EINTHOVEN System
This section presents the cardiac conduction model,
the input to the system, the reasoning mechanisms,
and output produced by the EINTHOVEN system.
EINTHOVEN has been validated using simple
rhythms from introductory ECG textbooks [7] and
more complex rhythm strips from clinical records
and intermediate-level ECG textbooks [8].
Cardiac Conduction Model In EINTHOVEN
the cardiac conduction system is modeled as a graph
[9], a mathematical construct defined as a collection
of objects with connections between them. The ob-
jects are called "nodes" and in our model represent
the anatomic or functional elements of the cardiac
conduction system. Nodes also have properties such
as refractory periods, transit times from entrance
to exit (that are related to the conduction veloci-
ties within the element), and observability on the
electrocardiogram or on intracardiac electrograms.
The connections between the objects represent the
connections between the elements of the cardiac con-
duction system.
The most complex and comprehensive model, or

"base model", implemented in EINTHOVEN can
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represent anatomic abnormalities consisting of up
to four accessory atrioventricular (AV) pathways,
three slow AV nodal pathways, and one atriofascic-
ular ("Mahaim") pathway, as well as up to seven ec-
topic foci in each of the atria, atrioventricular node,
and ventricle. These values were chosen as practical
limits based on the number of abnormal pathways
observed in patients. There are no theoretical limits
on the number of these pathways in the model.

System Input The input to the system is a text
sequence describing the observed events (P waves,
QRS complexes, and T waves) that comprise a given
cardiac rhythm. Each element in the sequence de-
scribes the morphology, onset time, and width of an
event. These elements are obtained from annota-
tions by hand of the ECG by the user. Thus, errors
in annotation create errors in the input.

The Reasoning Mechanism Based on these
data, models of cardiac electrophysiology are gen-
erated by selectively activating and inactivating in-
dividual nodes in the base model. The models that
are created are specified through heuristic pattern-
matching of the observed events using deterministic
production rules [10]. Reasoning with the models
and observed events is implemented as a variation of
the hypothesize-and-test paradigm [11, 12]. Hypoth-
esized model behaviors are generated using discrete-
event simulation. These behaviors are the events,
either a P wave or QRS complex, that may be ob-
served on the ECG should that model be valid for
the given data.

Expected model behaviors for P waves and QRS
complexes are generated by traversing all "paths"
of electrical activation present in the model. Paths
begin with the node that produced the observed
event and progress through the model until a node
is reached whose activation may be observed on the
ECG. The output of the discrete-event simulation
algorithm is the set of all possible behaviors (ob-
served events) for a given model. These behaviors
are described by: (1) the chamber in which the pre-
dicted event will occur (either Atria or Ventricles),
(2) characteristics of the shape of the predicted wave
on the surface ECG (a shape class and whether the
class is normal or abnormal), and (3) a time win-
dow specifying the earliest and the latest times at
which the event may occur. These events are gen-
erated from the model by traversing it starting with
chamber that produced the current observed event,
passing in turn through all possible paths, and end-
ing with the postulated next event for each path.
The expected model behaviors are compared to

the next observed event. Models with at least one
expected behavior matching the observed event are
updated to better reflect the observed event using
a set of "Transition" rules. Examples of model pa-
rameters that are updated in this manner include the
spontaneous cycle length and transit times. Models
that fail to have at least one behavior that matches

the observed data, are marked as invalid and new
models are created using a set of "Abnormal Find-
ing" rules. The updated valid models or the newly
created models are simulated again, continuing the
cycle. Simulating and testing in this event-by-event
manner prevents combinatoric explosion of possible
expected behaviors.
System Output The output of EINTHOVEN
is a set of one or more causal diagrams, called '"ad-
der diagrams," that together constitute the complete
differential diagnosis of the rhythm. This format is
a standard format used by clinicians [13] and com-
pletely describes the cause-and-effect relationships
between individual events within a rhythm, as well
as transitions between distinct rhythms.
When more than one rhythm diagnosis is possible

for a given data set, the complete differential diag-
nosis is produced with a ladder diagram for each
possible rhythm. The rhythms are ranked roughly
by likelihood. Ambiguous rhythms have on the order
of five possible mechanisms.

Analysis of Errors Made by
Inexperienced Users
We obtained data describing these errors from two
sources. The first source was a preliminary study
[14] of the ability of physicians and nurses to inter-
pret rhythms when the presentation was in the form
of a copy of an electrocardiogram or a reconstructed
tracing that incorporated only the timing and shape
of the P waves and QRS complexes. The overall
error rate for all readers was surprisingly high. Re-
view of the data showed (1) failure to recognize un-
ambiguous patterns and (2) inattention to detail, as
evidenced by success in recognizing a pattern on one
specimen and failure to recognize the same pattern
on another. The second source was the experience of
one of us (L.E.W.) in teaching medical students, res-
idents in Internal Medicine, fellows in Cardiovascu-
lar Diseases and Clinical Cardiac Electrophysiology,
and consulting colleagues. Our analysis is consis-
tent with the experience of other teachers of clinical
ECG interpretation, but has not been published pre-
viously to our knowledge.
The types of errors in feature extraction during in-

terpretation of the body surface electrocardiogram
to which inexperienced health care providers are
prone include the following misclassifications:
1. Overlapping events. Failure to recognize P waves

that fall on T waves during tachycardias and dur-
ing second-degree AV block, flutter waves that
overlap the QRS complex, and atrial premature
complexes as causes of pauses;

2. Timing errors. Incorrectly positioning the bound-
ing box for a given wave, thus making the onset
of the wave too early or too late, and the width
too narrow or too wide.

3. Misidentification. Overinterpretation or underin-
terpretation of peaked T waves as P waves;
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4. Misclassification of P wave shape. Mistaking the
shape of P waves that fall on T waves because
the time of onset of the P wave is not known or
because the P shape is distorted by the shape of
the T wave; and

5. Misclassification of QRS complex shape. Misclas-
sifying narrow QRS complexes as normal when
they are wide, and visa versa; and wide QRS com-
plexes as ventricular when they are more likely
supraventricular with aberrant conduction or with
ventricular preexcitation, or visa versa.
Other aspects of the rhythm, such as inter-

vals between waves and regional patterns such
as group beating, are derived automatically by
EINTHOVEN and so can be misinterpreted indi-
rectly due to the above errors.

RESULTS
Errors in input may be divided into four general cat-
egories: missing waves, extra waves, mispositioned
waves, and mislabeled waves. Strategies for compen-
sation by EINTHOVEN are tailored to each cate-
gory.

Missing Waves
In general, missing waves can be dealt with by us-
ing longer paths to generate expectations: instead of
generating an expectation for only the the first ob-
servable event, additional expectations can be gen-
erated for the second and subsequent observable
events. This is already done in the presence of ven-
tricular premature complexes, and is an integral part
of the "hot nodes" algorithm [9]. The conclusion
that a wave is in fact missing is reached when sub-
sequent events match the expectations (generated
from the longer path) that correspond to that con-
clusion.

Additionally, missing P waves are inferred by a
least-common-denominator algorithm that reevalu-
ates intervals between P waves, QRS complexes, and
P-QRS pairs in a "look-back" step (see below) after
each observed P wave and QRS complex.

Extra Waves
This is an uncommmon problem because the inex-
perienced user tends to miss cardiac events rather
than to overinterpret them. By contrast, automatic
systems err in the direction of overinterpretation.
We have considered three different approaches that
can be used for extra waves. The simplest approach
is to try to disqualify the suspected beat based on
the model by showing, for example, that it falls on
the absolute refractory period of its alleged chamber
of origin. Secondly, the current models can be sus-
pended, rather than discarded, until further events
show the suspected false wave to be genuine or arti-
factual. This requires a 'qook-back" procedure after
all hypotheses have been suspended that compares
the set of hypotheses that existed before with the
set that exists after the confusing event. Further, it

requires the assumption (by Occam's razor) that the
rhythm did not change during the confusing event.
Finally, the proposed system can request the user to
re-examine the original signal for other evidence of
artifact. So far, we have avoided implementing any
of these assumptions. Instead, we have preferred to
have the system fail to reach a conclusion and then
to query the user.

Mispositioned Waves
Mispositioned waves that fall outside a given expec-
tation window constitute two errors: a missing wave,
since the expectation was falsely not met, and an ex-
tra wave, since the observed event appears elsewhere
in the input data stream. We handle this error as a
combination of the other two errors.

Mislabeled Waves
The problem of mislabeled waves is more difficult.
Four approaches can be used for mislabeled waves.
Filters on the input data stream, which look for ob-
vious incompatibilities, such as overlapping waves,
can also look for physiologically impossible combi-
nations such as a T wave without a preceding QRS
complex, two sequential QRS complexes without an
intervening T wave (assuming visible T waves, and
usually resulting from mislabeling of the true T wave
as a second QRS), impossibly wide P waves (usually
resulting from mislabeling of a wide QRS or a T
wave as a P wave), and so forth. The second and
third are similar to those proposed for dealing with
extra waves: try to work around the problem after
flagging it as a source of potential error or allow the
analysis to fail, then to ask the user to reconsider the
wave annotations in the region in which it failed.
The fourth approach is to relax the criteria for

certain Abnormal Finding rules and then to rely on
strict criteria for the Transition rules that maintain
their diagnoses. This approach can be used only
with the special diagnoses that must be invoked al-
most indiscriminantly (see below). For example, the
conventional diagnosis of multifocal atrial tachycar-
dia requires the finding of three abnormally shaped
P waves. One of the Abnormal Finding rules for
this diagnosis requires only two abnormally shaped
P waves and one normal P wave. It carries the "ten-
tative" confidence label, so that the corresponding
diagnosis is dropped if subsequent events refute it.

Errors that Terminate the Analysis
The programn architecture can be modified to allow
it to work around otherwise fatal errors. Ordinarily,
the top-level algorithm stops processing the input
specimen when an observed event falls to match any
of the expectations of any of the models it consid-
ers valid based on the prior observed event. For
certain rhythms, processing is allowed to continue
even though one of the valid models fails to pre-
dict a subsequent observed event. These rhythms
are those that must be invoked almost indiscrim-
inately, such as atrioventricular dissociation, mul-
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tifocal atrial tachycardia, and persistent junctional
reentrant tachycardia. The models for these diag-
noses are simply discarded if their expectations are
not fulfilled at any point in the analysis.
We have considered adding rules intended to

specifically recognize and, if possible, to characterize
possible erroneous inputs, such as alleged QRS com-
plexes not followed by T waves, in a record in which
T waves are readily evident; and alleged premature
P waves that do not change the timing of the sub-
sequent normal P waves. Similarly, tape speed error
masquerading as change in heart rate (interval from
one QRS to the next QRS) in Holter monitor record-
ings can be detected by a parallel change in the PR
interval, QRS width, and QT interval of each cardiac
cycle in the abnormal region. At this time, however,
we have elected to allow the analysis to fail and to
inform the user of the input events that caused the
failure. The alternative is to allow the system to
modify the input on the basis of incorrect assump-
tions that the inexperienced user may fail to correct.

DISCUSSION
The performance of decision support systems is crit-
ically dependant on the combination of the accuracy
of the input data and the ability of the systems to
recognize and react appropriately to errors in the
input. This is a general problem in the design of
expert systems for real clinical applications. In this
paper, we examined one such system in detail.
We have described the types of errors that can

be expected from medically sophisticated users who
are relatively inexperienced in the interpretation of
cardiac rhythms on the ECG. We believe that our
description is a valid generalization and is not id-
iosyncratic to one particular cardiologist. We are
not aware of prior published work on this topic, how-
ever. We have also described compensatory mech-
anisms we have considered, some of which we have
implemented.
Below we describe additional compensatory mech-

anisms that are not implemented because they have
substantial disadvantages at this stage of the devel-
opment of EINTHOVEN.
1. Potentially fatal errors could be noted and then

bypassed by re-invoking the Abnormal Finding
rules. This would bypass any error because one
Abnormal Finding rule, which invokes atrioven-
tricular dissociation, is always satisfied. The prob-
lem with this modification is to distinguish in-
adequacies in the knowledge bases and/or in the
reasoning mechanisms, from artifact in the input.
This modification would allow the possibility of
ignoring a dangerous but correct interpretation in
favor of an artifactual but incorrect interpretation.
This modification might be safe ifEINTHOVEN
were developed to greater clinical reliability.

2. Meta-Abnormal Finding rules to guess what errors
might have been made.
The current paradigm for EINTHOVEN is a sin-
gle level, event-by-event analysis in which future

events are not considered. We could implement a
second level of analysis that would be invoked af-
ter the first level fails to interpret its findings and
must resort to one of its fall-back strategies. This
second level would be invoked after one or more
subsequent events have been analyzed and found
consistent. It would take a bird's eye view of all
of the events in a defined window of interest to
mimic the global view of the physician who scans
the entire rhythm strip prior to beginning inter-
pretation. Note that this level would not violate
the real-time model underlying EINTHOVEN
because it would be retrospective and would not
access future events.
This type of '"ook-back" analysis is already im-
plemented in EINTHOVEN in two areas: (1) to
remove diagnoses that must be raised and can be
excluded only in retrospect, such as second-degree
AV nodal block in a case in which the PR inter-
val prolongs progressively but no P wave fails to
conduct to the ventricles, and (2) to detect inter-
mittent failure to find all instances of regularly
occurring P waves, which may be somewhat more
visible in some parts of the record than in others.
Features of the events in the time window of in-
terest would be determined and made available
as predicates in meta-Abnormal Finding rules.
These predicates would be more powerful than
those in the first-level, ordinary Abnormal Find-
ing rules because they would include features of
the events that follow, as well as of those that pre-
cede, the confusing events. This meta-level anal-
ysis would then be able to:

(a) to encode regional patterns, such as Marriott's
famous rules that give the differential diagnosis
of group beating, of pauses, and so forth [13].
Recognition of these patterns would allow them
to conclude that confusing events may be truly
physiologic.

(b) to determine whether the rhythm "marches
through" the confusing events as if they were
not there. This finding is most consistent with
the interpretation that the confusing events are
artifactual.

(c) to measure variations in signal features that
should not vary, such as the durations of events
that the user classifies as having the same shape
class. If the user measures P wave and QRS
complex durations sufficiently inaccurately, the
expectations will need to be made more flexible.

(d) to detect intermittent failure to find all in-
stances of regularly occurring non-P wave
events.

Because the meta-Abnormal Finding rules would
be able to reinterpret events that have already
been interpreted, they would be able to split in-
dividual hypotheses into several hypotheses, each
representing one possible interpretation of a con-
fusing event, and then to re-run the first-level AF
rules on each of the new hypotheses starting with
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the reinterpreted event and continuing until the
end of the analysis window. We have elected to
defer implementation of this level of sophistica&
tion until EINTHOVEN is further developed in
its current form.

3. Interaction with the user.
In some cases of erroneous input, it may be nec-
essary to suggest that the user reexamine the in-
put annotations. For example, a narrow complex
tachycardia at a rate of 150 beats per minute has a
good chance of being atrial flutter even if the user
identified only one "P" wave per QRS complex. In
this case, as when teaching students and residents,
it is appropriate to suggest that the tracing be re-
examined for a second atrial wave, perhaps adjoin-
ing the QRS complex. Another example would be
an interpolated narrow-complex QRS. While an
interpolated, premature wide-complex QRS with
morphology indicating ventricular origin is quite
reasonable and is consistent with a subsequent on-
time narrow QRS complex, it is unlikely that the
supraventricular location of an ectopic focus that
could cause a narrow QRS complex would also fail
to affect the next atrial event.

CONCLUSIONS
Decision support systems for clinicians must recog-
nize and deal adequately with errors made by users
who are, by definition, not domain experts. We have
explored this issue in the context of EINTHOVEN,
a system under development for automatic interpre-
tation of the electrocardiographic rhythm. The de-
sign goal for EINTHOVEN relevant to this paper is
to improve the robustness of its performance when
errors in its input are due to human error in an-
notation by hand of cardiac waves on the electro-
cardiogram. A secondary design goal is to develop
compensatory mechanisms that would also be useful
for dealing with errors made by automated rhythm
analysis systems.
We have described the classes of errors that are

made by medically sophisticated health care profes-
sionals who are inexperienced in the interpretation
of the cardiac rhythm in the electrocardiogram. We
have described how some of these are recognized and
compensated in the EINTHOVEN decision support
system. The pitfalls of attempting to compensate for
others of these are also described. These results may
be interesting as an example of the practical prob-
lems that arise in the design of real-world expert
systems
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